Use este identificador para citar ou linkar para este item: http://repositorio.ifam.edu.br/jspui/handle/4321/1512
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisor1Santos, Alyson de Jesus dos Santos-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5998752909180697pt_BR
dc.contributor.referee1Santos, Alyson de Jesus dos-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5998752909180697pt_BR
dc.contributor.referee2Santos, Lucèlia Cunha da Rocha-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2242046166554146pt_BR
dc.contributor.referee3Fialho, Michaella Socorro Bruce-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9348859124436505pt_BR
dc.creatorCavalcante, Vinícius Loureiro-
dc.date.accessioned2024-09-23T15:52:23Z-
dc.date.available2023-09-23-
dc.date.available2024-09-23T15:52:23Z-
dc.date.issued2023-12-22-
dc.identifier.citationCavalcante, Vinicius Loureiro. 71f. 2024. Uso de uma rede neural convolucional para detecção de covid-19 automática através de imagens de raio-x. Monografia (Engenharia de Controle e Automação) - Instituto Federal de Educação. Ciência e Tecnologia do Amazonas, Campus Manaus Distrito Industrial, Manaus, 2024.pt_BR
dc.identifier.urihttp://repositorio.ifam.edu.br/jspui/handle/4321/1512-
dc.description.abstractThis study aims to evaluate the effectiveness of using neural networks in the detection of COVID-19 through chest X-rays. Based on a literature review, the methodology for building the neural network will be defined, and it will be trained with data collected from reliable sources and analyzed to evaluate the accuracy of detection. The use of neural networks can be a promising and non-invasive alternative for the diagnosis of COVID-19, especially in regions where PCR tests are scarce or time-consuming. Additionally, the use of neural networks may offer advantages over other forms of diagnosis, such as computed tomography (CT), as chest radiographs are more widely available and less costly. However, it is important to consider the limitations and challenges encountered in using neural networks for this purpose, such as the lack of specificity in mild or asymptomatic cases and the need for quality equipment and trained professionals to interpret the images. This study aims to contribute to the advancement of COVID-19 diagnosis through non-invasive and effective methods, as well as to identify possible limitations and challenges in using neural networks for this purpose.pt_BR
dc.description.resumoEste trabalho tem como objetivo avaliar a eficácia do uso de redes neurais na detecção de COVID-19 por meio de radiografia de tórax. Com base em uma pesquisa bibliográfica, será definida a metodologia para a construção da rede neural, que será treinada com dados coletados de fontes confiáveis e analisados para avaliar a acurácia da detecção. A utilização de redes neurais pode ser uma alternativa promissora e não-invasiva para o diagnóstico de COVID-19, especialmente em regiões onde os testes de PCR são escassos ou demorados. Além disso, o uso de redes neurais pode oferecer vantagens em relação a outras formas de diagnóstico, como a tomografia computadorizada (TC), pois as radiografias de tórax são mais amplamente disponíveis e menos onerosas. No entanto, é importante considerar as limitações e desafios encontrados no uso de redes neurais para esse fim, como a falta de especificidade em casos leves ou assintomáticos e a necessidade de equipamentos de qualidade e profissionais treinados para interpretar as imagens. Com este estudo, espera-se contribuir para o avanço do diagnóstico de COVID-19 por meio de métodos não-invasivos e eficazes, além de identificar possíveis limitações e desafios no uso de redes neurais para esse fim.pt_BR
dc.description.provenanceSubmitted by Darlene Rodrigues (darlene.rodrigues@ifam.edu.br) on 2024-09-23T15:52:23Z No. of bitstreams: 1 USO DE UMA REDE NEURAL CONVOLUCIONAL PARA DETECÇÃO DE COVID-19 AUTOMÁTICA ATRAVÉS DE IMAGENS DE RAIO-X_CAVALCANTE_2023.pdf: 3006888 bytes, checksum: 83728a21d87766e5b9aa55258f3de91b (MD5)en
dc.description.provenanceMade available in DSpace on 2024-09-23T15:52:23Z (GMT). No. of bitstreams: 1 USO DE UMA REDE NEURAL CONVOLUCIONAL PARA DETECÇÃO DE COVID-19 AUTOMÁTICA ATRAVÉS DE IMAGENS DE RAIO-X_CAVALCANTE_2023.pdf: 3006888 bytes, checksum: 83728a21d87766e5b9aa55258f3de91b (MD5) Previous issue date: 2023-12-22en
dc.languageporpt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCampus Manaus Distritopt_BR
dc.publisher.initialsInstituto Federal do Amazonaspt_BR
dc.publisher.initialsIFAMpt_BR
dc.publisher.initialsEngenharia de Controle e Automaçãopt_BR
dc.publisher.initialsInstituto Federal do Amazonaspt_BR
dc.publisher.initialsIFAMpt_BR
dc.publisher.initialsEngenharia de Controle e Automaçãopt_BR
dc.publisher.initialsInstituto Federal do Amazonaspt_BR
dc.publisher.initialsIFAMpt_BR
dc.publisher.initialsEngenharia de Controle e Automaçãopt_BR
dc.relation.referencesKheyroddin, R., Mohammadi, R., Nikbakht, S., & Asadian, M. (2021). Diagnosis of COVID-19 using chest X-ray images and a deep learning convolutional neural network. Medical & Biological Engineering & Computing, 59(1), 1-9. Narin, A., Kaya, C., & Pamuk, Z. (2021). Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Analysis and Applications, 24(3), 1207-1220. Shu, Y., Qiu, Y., Li, W., Zhan, Z., He, W., & Ren, B. (2020). A convolutional neural network-based framework for COVID-19 pneumonia detection from radiography images. Engineering Applications of Artificial Intelligence, 94, 103817. Yin, R. K. (2015). Estudo de caso: planejamento e métodos. Bookman Editora. GUAN, W.-J. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine, v. 382, n. 18, p. 1708-1720, 30 abr. 2020. DOI: 10.1056/NEJMoa2002032. CARFÌ, A. et al. Persistent Symptoms in Patients After Acute COVID-19. JAMA, v. 324, n. 6, p. 603-605, 2020. 74 CDC. Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention, 2021. Disponível em: https://www.cdc.gov/coronavirus/2019-ncov/index.html. Acesso em: 1º de abril de 2023. ELLUL, M. A. et al. Neurological associations of COVID-19. Lancet Neurology, v. 19, n. 9, p. 767-783, 2020. GRASSSELI, G. et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA, v. 323, n. 16, p. 1574-1581, 2020. Conselho Federal de Medicina. Resolução CFM nº 2.107/2014. Dispõe sobre o uso da radiologia no Brasil e dá outras providências. Brasília, DF: Conselho Federal de Medicina, 2018. Disponível em: http://www.portalmedico.org.br/resolucoes/CFM/2014/2107_2014.pdf. Acesso em: 01 abr. 2023. Wong, H. Y. F. et al. Frequency and Distribution of Chest Radiographic Findings in COVID-19 Positive Patients. Radiology, v. 296, n. 2, p. E72-E78, 2020. Rajpurkar, P. et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLOS Medicine, v. 15, n. 11, p. 1-18, 2018. 75 BROWNLEE, Jason. Why Python is the Best Programming Language for Machine Learning. Machine Learning Mastery, 2019. Disponível em: https://machinelearningmastery.com/why-python-is-the-best-platform-for-machine-learning/. Acesso em: 02 abr. 2023. CHOLLET, François. Why Keras? Deep Learning for Humans. Disponível em: https://keras.io/why_keras/. Acesso em: 02 abr. 2023. GÉRON, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, Inc., 2019. OLIVEIRA, André. Big Data: A Revolução dos Dados. Novatec Editora, 2018. RASCHKA, Sebastian; MIRJALILI, Vahid. Python Machine Learning. Packt Publishing, 2017. Bisong, A. (2021). The ultimate guide to Google Colab for machine learning. Medium. Disponível em: https://towardsdatascience.com/the-ultimate-guide-to-google-colab-for-machine-learning-e5f7163907c3. Acesso em: 03 de abril de 2023. Brownlee, J. (2016). Why Python is the language of choice for deep learning. Machine Learning Mastery. Disponível em: https://machinelearningmastery.com/why-python-is-the-language-of-choice-for-deep-learning/. Acesso em: 03 de abril de 2023. 76 Kluyver, T. et al. (2016). Jupyter Notebooks – a publishing format for reproducible computational workflows. Positioning and Power in Academic Publishing: Players, Agents and Agendas: Proceedings of the 20th DOMINGOS, Pedro. O algoritmo mestre. São Paulo: Novatec, 2018. OZTURK, Tulin et al. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, v. 121, p. 103792, 2020. WANG, Lei et al. A COVID-19 diagnostic model based on CT images and machine learning. Neural Computing and Applications, v. 32, n. 10, p. 5849-5858, 2020. APOSTOLOPOULOS, Ioannis D.; BESSIANA, Kristalia Mezei. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine, v. 43, n. 2, p. 635-640, 2020. GOODFELLOW, Ian et al. Deep learning. Nature, v. 521, n. 7553, p. 436-444, 2016. LECUN, Yann et al. Deep learning. Nature, v. 521, n. 7553, p. 436-444, 2015. 77 LITJENS, Geert et al. A survey on deep learning in medical image analysis. Medical image analysis, v. 42, p. 60-88, 2017. ZEILER, Matthew D. et al. Visual ESTEVA, Andre et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, v. 542, n. 7639, p. 115-118, 2017. GULRAJANI, Ishaan et al. Understanding neural networks through deep visualization. arXiv preprint arXiv:1611.05431, 2016. SZELISKI, Richard. Computer vision: algorithms and applications. Springer Science & Business Media, 2010. Hemdan, E. E. D., Shouman, M. A., & Karar, M. E. (2020). COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images. arXiv preprint GONZALEZ, Rafael C.; WOODS, Richard E. Processamento de imagens digitais. Editora Edgard Blucher, 2018. Horry, M., Salem, M. Z. M., Ali, S., & Abdelfattah, M. (2021). A review of image preprocessing techniques for COVID-19 detection using chest X-ray images. IEEE Reviews in Biomedical Engineering, 14, 288-299. 78 Khan, A. I., Shah, J. L., Bhat, M. M., & Coroama, V. C. (2021). A review on techniques for detection of COVID-19 using chest X-ray images. IOP Conference Series: Materials Science and Engineering, 1063, 012039. Sarwar, S., & Arshad, F. (2020). An overview of deep learning based approaches for classification and detection of COVID-19 from chest X-ray images. Computers in Biology and Medicine, 121, 103805. Ko, H., Park, C., & Shin, S. (2021). COVID-19 Detection from Chest X-ray Images using Deep Learning and Convolutional Neural Networks. Journal of Healthcare Engineering, 2021. Russell, S. J., & Norvig, P. (2010). Artificial intelligence: a modern approach. Prentice Hall Press. Domingos, P. (2015). The master algorithm: How the quest for the ultimate learning machine will remake our world. Basic Books. Alpaydin, E. (2010). Introduction to machine learning (2nd ed.). MIT Press. Bishop, C. M. (2006). Pattern recognition and machine learning (1st ed.). Springer. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (1st ed.). MIT Press. 79 Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. Mitchell, T. (1997). Machine learning (1st ed.). McGraw Hill. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (1st ed.). MIT Press. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. 80 Zhang, X., & Zhao, L. (2021). Convolutional Neural Networks. In Deep Learning: A Comprehensive Guide to Artificial Intelligence - With Examples in Python (pp. 173-204). Springer. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). KRIZHEVSKY, Alex et al. ImageNet Classification with Deep Convolutional Neural Networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012. p. 1097-1105. Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (pp. 315-323). Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15(1), 1929-1958. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. 81 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.’ Rosenblatt, F. (1958). The Perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408. João, et al (2023). Detecção de COVID-19 em Imagens de Raio-X de Tórax através de Seleção Automática de Pré-processamento e de Rede Neural Convolucional. SAIT, UNAIS; k v, Gokul Lal; Prajapati, Sunny; Bhaumik, Rahul; Kumar, Tarun; S, Sanjana; Bhalla, Kriti (2020), “Curated Dataset for COVID-19 Posterior-Anterior Chest Radiography Images (X-Rays).”, Mendeley Data, V1, doi: 10.17632/9xkhgts2s6.1 M.E.H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.A. Kadir, Z.B. Mahbub, K.R. Islam, M.S. Khan, A. Iqbal, N. Al-Emadi, M.B.I. Reaz, M. T. Islam, “Can AI help in screening Viral and COVID-19 pneumonia?” IEEE Access, Vol. 8, 2020, pp. 132665 - 132676. Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Kashem, S.B.A., Islam, M.T., Maadeed, S.A., Zughaier, S.M., Khan, M.S. and 82 Chowdhury, M.E., 2020. Exploring the Effect of Image Enhancement Techniques on COVID-19 Detection using Chest X-raypt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectRede neuralpt_BR
dc.subjectRadiografia de tóraxpt_BR
dc.subjectCOVID-19pt_BR
dc.subjectDiagnósticopt_BR
dc.subjectAcuráciapt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOSpt_BR
dc.titleUso de uma rede neural convolucional para detecção de covid-19 automática através de imagens de Raio-xpt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
Aparece nas coleções:Monografia_Cont_Automação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
USO DE UMA REDE NEURAL CONVOLUCIONAL PARA DETECÇÃO DE COVID-19 AUTOMÁTICA ATRAVÉS DE IMAGENS DE RAIO-X_CAVALCANTE_2023.pdfMonografia - Controle e Automação2,94 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.